If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+22m+40=0
a = 1; b = 22; c = +40;
Δ = b2-4ac
Δ = 222-4·1·40
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-18}{2*1}=\frac{-40}{2} =-20 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+18}{2*1}=\frac{-4}{2} =-2 $
| -5b-11=10b-10-14b | | 75x-9=7 | | (b/8)+4=24-12b | | 75-9x=7 | | -12k+17=-10k-13 | | 8x-32=14+8x | | 120=10n+20 | | 15+3u=-2u | | 2(2x-9)=39 | | -7h+9+7h=-1+2h | | 2x-x-1=1 | | r2=144 | | 4(c+5)+2c=-9 | | v+10=-3v-8-5v | | F(x)=3x^2-8x | | 125x+20=32 | | 10-5w=-4w | | 12v^2=2v-1 | | -5u+4=8u=43 | | 30=8-2y | | 5(x-3)=(x+5) | | 0.25x+10=48 | | 8d=4+9d | | -5(x+1)+3x=6-6(4x-3) | | 5+2x=-23-3x | | -9-b=-10b+9 | | 0.25x-10=70 | | 5(x+1)-8=5x(-4) | | 6t+t=4200 | | 9(x+10)=-3(x+6) | | 0=3t^2-24t+95 | | 4/5k+7/10=13/15k+3/5 |